

Chromosomal Microarray Testing

Test Sample requirements

CVS Extracted Sample; DNA Amniotic Fluid/Cultured

Cells

POC conception)

(product

Deliverables

Clinical report within 4-5 weeks

Pre-test and post test genetic counseling

GENOMIC RESEARCH & SOLUTIONS of ADPL

Special Features of our test

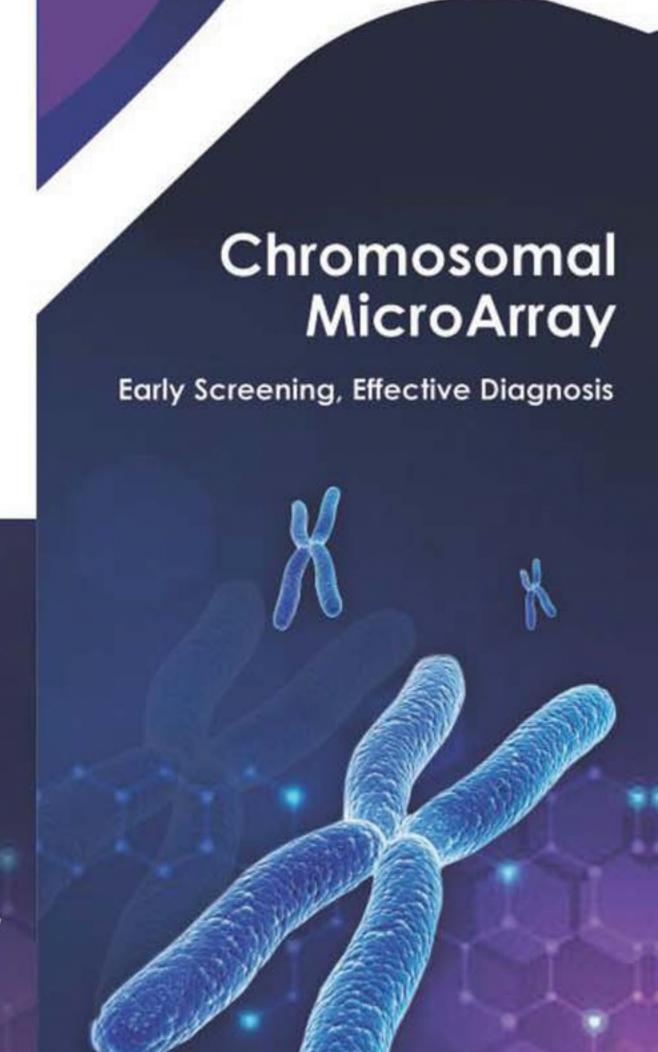
- >300k detection probes, High coverage density of >100kb in 396 pathological regions, > 20 % detection of lower mosaicism along with CNV and consanguinity detection.
- Advantages include precision testing and timely report delivery.

References

- Tse-Wen Chang, TW (1983). 'Binding of cells to matrixes of distinct antibodies coated on solid surface". Journal of Immunological Methods.
- Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities Melanie Manning, Genetics in Medicine
- Dugas C, Slane VH. Miscarriage. [Updated 2021 Jun 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532992/

About Greenarray

Greenarray is a molecular diagnostic laboratory. We offer diagnosis of infectious diseases, genetic testing and healthcare information to improve health and wellness. Our goal is to provide high quality affordable and accessible services.



2nd Floor, Above P.N. Gadgil showroom, Happy colony, Kothrud, Pune- 411038, Maharashtra, India.

+91 98230 49121

GA-0007/Dec/2021/500

Human genetic material are packed into small thread like subunits called chromosomes. Chromosomes contain protein and DNA organised into genes. A chromosome carries genetic

information from one generation to another. They play a vital role in cell division, heredity, variation, mutation, repair and regeneration.

These chromosome have their own genetic combinations and the slightest change in their combinations either addition, deletion, or an translocation (exchange) can result in birth defects and other health issues. When genes are missing, it can cause errors in development, because some of the "instructions" required, are missing.

The Chromosomal MicroArray is a high-resolution genetic test that screens for such changes in the chromosomal combinations that may otherwise go undetected.

Chromosomal microarray analysis (CMA) is a

detection of clinically-significant errors in gene

structure, like microdeletions (absent genes) or

Well suited for detection of interstitial duplications,

subtelomeric deletions/duplications and small

copy number variations, resulting in physical or

intellectual consequences which cannot be

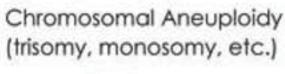
duplications (doubling of genes), with a high

microchip based testing platform for the

sensitivity for submicroscopic aberrations

(changes in structure and number).

What is a Chromosomal


Microarray (CMA)?

Which all conditions can CMA detect?

Microdeletions and microduplications of chromosome segments

Unbalanced rearrangements of chromosome structure (translocations, etc.)

CMA testing is often recommended in miscarriages.

Genetic analysis of samples collected from pregnancy losses are necessary to identify the cause etiology and ensure appropriate advice and guidance to the couple undergoing treatment.

Trimester is associated with the highest risk for miscarriage

of pregnancies result in miscarriage

of the first trimester pregnancy loss are due to chromosomal abnormalities

When is the test recommended?

Fetal abnormalities in ultrasound scan

Abnormalities in maternal serum screening (mother's blood tests)

Family history of genetic abnormalities

Miscarriage and Spontaneous abortion

Still birth

Karyotyping has been the standard procedure but it has certain limitations while identifying small aberration (Copy number variation) and it often yields no result due to cell culture failure and contamination with maternal cells.

Why choose CMA?

Karyotyping

CMA

- Cell culturing is required
- High rate of misdiagnosis as it cannot detect maternal contamination
- Does not detect smaller aberrations
- Low resolution
- Cell culturing is not required
- Rules out misdiagnosis as it can detect maternal contamination
- · Can detect large and small aberrations as well as variants of
- unknown significance High resolution

CMA technique is much more sensitive than karyotyping, which so far has been the most commonly used method.

detected by routine methods like FISH.